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B The simplest model: Pinhole camera model
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Internal parameters: focal length f ( "focal distance")
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B Projection of a scene point P =(X,Y,Z) on to a pixel p =(u,v,w):

u X V y
——=—,——=—,W=—f
f Z f Z uz VZ
X:——’y:——
u u X f f
f f
p=|v|=] v |[=——|Yy|=-—P Projecting back
Z Z
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Perspective projection
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Pinhole Il

B Often used version:
Pinhole camera model in Positive Location :

B Projection center C is located behind the image plane
® This means: no mirroring (minus signs are omitted)

Object plane
Image plane

C Projection center
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B Pinhole camera model simplifies the real conditions strongly. Therefore,
this model needs to be extended to be used also in practice.

® First, some definitions:

® Optical axis:
Straight through the projection center, perpendicular to the image plane
® Principal point C(c,, c,):
Intersection of the optical axis with the image plane

Object plane
Image plane

Projection center
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Extended Camera Model Il

B Coordinate Systems:

® Image coordinate system:

B 2D coordinate system

B Unit [pixels]

B Agreement for the Lecture (applies to most camera drivers): origin in the upper left
corner of the image, u axis points to the right, v Axis points downwards

® Camera coordinate system:

B 3D coordinate system

B Unit [mm]

B Originisin the Projection center, axes parallel to the axes of the Image coordinate
system, i.e. x axis to the right, y axis downwards, and the z axis in accordance with
the three-finger rule for a Right-handed coordinate system to the front

® World coordinate system:

B 3D coordinate system

® Unit [mm]

B Basic coordinate system that can be anywhere in the room
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Extended Camera Model Il

image coordinate
system
u

camera coordinate

system principal point
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world coordinate
system

YA R ®
z

image plane
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B Terms:

@ Intrinsic camera parameters:
B Focal length, image point
® Parameters for the description radial / tangential Lens distortion

B Define the non (unambiguous) reversible illustration from camera coordinate
system into the Image coordinate system

@ Extrinsic camera parameters:
B Define the relationship between the camera and the World Coordinate System
B Generally described by a rotation R and a Translation t
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Extended Camera Model V

B Simplifications of the Pinhole camera model:
® Principle point is in the center of the image plane
® Pixels are assumed to be square
® No modeling of lens distortion
|

There is no world coordinate system or it is identical with the camera
coordinate system, i.e., no extrinsic camera parameters
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Extended Camera Model VI

® Focal length:
® Focal length is the distance between projection center and image plane

® Since pixels are not like square but rather like rectangular, there is one parameter
for each direction, i.e.: f,, f,

® The parameters f,, f, are the products from the actual Focal length with unit
[mm] and the respective conversion factor with unit [Pixel / mm]

® The unit for the parameter f,, fy is thus [Pixel]
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B The imaging of the camera coordinate system in the Image coordinate
system, exclusively with the Intrinsic parameters is then defined by:

u C 1(f - X

X

V C Z | Y

y y

® Or, as a matrix multiplication by calibration matrix K in Homogeneous
coordinates:

u X f. 0 ¢,
v-w |=K|Y K=|0 fy c,
W Z 0 0 1
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B Extrinsic camera calibration

B [s defined by a coordinate transformation from rotation R and translation t

® Coordinate transformation from the world coordinate system to the
Camera coordinate system:

X, =Rx, +t

® The final output is a 3x4 projection matrix P (involving both intrinsic and
extrinsic parameters) in homogeneous coordinates:

X

P = (KR |Kt)

Y
Z
1
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B The imaging by real lenses is not perfectly linear
B In particular, lenses with a small focal length form the (Radial) distortion

A sample distorted camera image!
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B Models are generally used
® Radial lens distortions
® Tangential lens distortions

B The output is the projection of the undistorted Coordinates on the
plane z = 1:

—h

@ For the distorted image coordinates: {X“ ] :

® Radius: r = \/xs + ys
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® From the coordinates x,, y,, the distorted coordinates are computed
according to the distortion model

B Radial lens distortion

X X
[ d}: 1+d,r? +d2r4){ j
Y, Y,

B Tangential lens distortion

X, X, d,(2x y )+d,(r"+2x7)) (u, f X, +¢,
= + —
Y, Y. ) ldy(r*+2y)+d,(2x.y.)) v, f,¥a+C,
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Lens Distortions IV ﬂ(IT

® Example of an undistorted image

® For each pixel in the rectified image, the intensity or color value is
determined by "lookup" in the distorted original image and
interpolation (e.g., bilinear)
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Camera Calibration | -\\J(IT

Karlsruhe Institute of Technology

B The calibration of a camera means the determination of the parameters with
respect to a selected one camera model

B The determination of the intrinsic parameters is independent of the
structure; As long as the zoom and focus of the camera remain the same,
these parameters do not change

B The determination of the extrinsic parameters depends on the selection of
the world coordinate system and changes depending on the structure
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@ If the camera is calibrated, then the imaging function f maps a point
from the world coordinate system unambiguously into the image
coordinate system:

B f:R35>R2

B f is defined by the projection matrix P and subsequent transformation
of the homogeneous coordinates by division of w

B The inverse image maps a point in the image coordinate system to a
straight line in the world coordinate system that passes through the
projection center
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Given:

® Two cameras with projection matrices C and C’
@ Two images X und X" of the point X

@ Then X can be reconstructed

X
\
L /
. /
\\ /

)
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B Connection between two cameras is given by the epipolar geometry

B The intersections e and e”of the straight line through the projection centers
with the image planes are called Epipole

>
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Epipolar Geometry Il ﬂ(IT

W Epipolar plane (X):
A plane passes by C, C"and scene point X

X
®
epipolar plane 7T \
\\
% | | .
/\ ‘ di
C ) cl
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B Epipolar line I'(x): Line of intersection of nt(X) with image plane

B All points X, which are imaged
on x in camera image 1, are
mapped to a Point of the
line /'(x) in camera image 2.

\4 epipolar line

/ ~
/ for x
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B All epipolar lines of a camera system intersect in the epipoles e and €

‘ / LY *
| A \
[ / \
/ \ X
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B Use

W Restriction of the correspondence problem from two dimensions to one
dimension since, according to corresponding features, only the epipolar
line has to be searched, therefore:

Higher robustness (less false correspondences)
B Higher efficiency
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B Mathematical description of epipolar geometry is performed by the
fundamental matrix
B Properties of the fundamental matrix F:
B |[s a3x3-Matrix
® Has Rank 2

® For all correspondences X, X :
X TEx=0
(X and X~ are pixels in homogenous coordinates with w = 1)
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B The epipolar lines can be calculated with the fundamental matrix
B Epipolar lines:
mI=Fx
m " =Fx
B The following applies to the epipoles:
® Fe=0
m Fe™=0
B Note: | (or |") defines a 2D straight line as follows:

|-x = 0 for all pixels X (in homogenous coordinates with w = 1), which lies on
this straight line
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B The fundamental matrix can be calculated in several ways:
® About image point correspondences in the left and right camera

® For known intrinsic and extrinsic calibration of the cameras directly via the

calibration matrices K, K” and the essential matrix E, which is defined by the
extrinsic parameters

>
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B Calculation of the fundamental matrix via Essential matrix is possible

B Essential matrix can be calculated by the extrinsic parameters:
B Given:

® Camera 1 with (I | 0) as Transformation (Identical)
® Camera 2 with (R | t) as Transformations

B Essential matrix E can be calculated as:

The following applies to the

0 -, 4 epipoles:
E=[tJrR=]t, 0 -t |R = -KR't
e =K't

-t, 't 0
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B Having computed the essential matrix (e.g., calculated via the extrinsic
parameters) and the intrinsic parameters, i.e. the calibration matrices K, K’,
the fundamental matrix can be calculated as:

F = K TEK?

B Conversely, if the fundamental matrix has been determined (e.g., via pixel
correspondences) and the intrinsic parameters, i.e. the calibration matrices
K, K’, the essential matrix can be calculated as:

E=KTFK
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B Benefits of the Fundamental Matrix:

® By using the fundamental matrix, the input images can be rectified

W After rectification, all epipolar lines run horizontally with the same v-coordinate as
the image point in the other camera image

W After correspondences only horizontal (in one direction) has to be searched
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B Rectified images have the advantage that optimized correlation algorithms

can be used for solving the correspondence problem
= 30 Hz (and higher) for calculating the disparity card at 640 x 480 8-bit

gray scale

B Disadvantage:
® Interpolation necessary for the calculation of the rectified images = Quality loss

® [Images strongly distorted depending on the structure

>
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B Example of rectification with a standard stereo setup = relatively low
distortion

Original Images
Left / Right

Rectified Images
Left / Rigth
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Stereoscopy: Depth Maps IV

B After solving the correspondence problem:
® Point clouds can be calculated by triangulation, as explained before

® Depth images are generated by recording the disparities (Difference of u-
coordinates for correspondence found in the rectified images) into a gray scale
image: = The higher the gray value, the closer the corresponding 3D point to

the camera is
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B Example of standard benchmark image pair “Tsukuba”

Left
Image

Right
Image
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B A pattern is projected to make homogeneous surfaces structured
B Knowledge of the pattern is not necessary
@ Projector does not need to be calibrated

B Correspondence problem for stereo camera systems can be solved more
effectively

>
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Active Pattern Projection
B |dea:
Geometrical structure coded in projected light can be read back from the
image

Auswertung und Steusrung

@ Principle: Triangulation

CCO-Kameara

® Projection of a light pattern | . . | L
on object & Sy leser g =0 | L

B Observation of the . - Y D
projected pattern by camera ' ;

® Calculation of the selected
3D point
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B Projection of two dimensional patterns
B Problem: Correspondence problem

® Which point in the camera image corresponds to which ray of the projector?

>
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B Types of patterns for solving correspondence problems
® Time coded methods
® Phase shift method
® Frequency encoding

® Locally coding methods
® Color coding
B Binary coded black and white pattern

>
Chapter 7 | 40 H 2 I



Binary Coding / Time Coded Process @~ ==» oot

Projected
over time

Example:

3 binary-encoded patterns
which allows the measuring
surface to be divided in 8 sub-
regions

Pattern 3

Pattern 2

Pattern 1
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W Projecting many strips one after the other
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Binary coding of stripe pattern - smaller number of projections
When n projections with different patterns n - 2" strips
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In the event of a faulty evaluation of a pixel code value, max. Error: 2"

Using the GrayCode > max. Error: 1
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B Each strip is made by projecting several patterns each of which has a unique
code [Posdamer 82]

Time

>
Chapter 7 | 43 H 2 I



eeeeeeeeeeeeeeeeeeeeeeeeeee
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Example:

7 Binary pattern

Projection
over time

Pattern 3

Pattern 2

S 88

Pattern 1
Codeword: 101.... = identifies the strip
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Top: Binary code, Bottom: Gray code

O 1 2 3 4 5 6 7 8 9 10111213 14 15
Bit 1
Bit 2
Bit 3
Bit 4

01 2 3 45 6 7 8 9101112131415

Bit 1
Bit 2
Bit 3
Bit 4
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B For multiple projection of binary patterns (or Gray Code), the achievable
resolution is limited by the resolution of the projector

B Therefore: Combination with phase shifting
® Phase only uniquely in the interval [-7t/2, +1t/2]
® Combination solves ambiguity
B Sub pixel resolution (regarding projector) is achieved

>
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B Four different phases in the phase shifting process
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B Sinusoidal gray scale is projected onto the scene
® Intensity value I(x,y) in the i-th phase pattern

L.(X,y)=1,+A(X,y)-sin(p(X,y)+1-Agp)

lo: Intensity offset

A(x,y):  Amplitude

¢(x,y).  Searched phase value
Ap: Phase shift per stage

>
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® Ex. One case with 4 measurements and A¢ = /2

|3(X’ y)_ |1(X’ y)
L, (X, y) = 1,(x,y)

@ (X, Yy) = arctan

® Uniqueness of the phase value only within one period guaranteed
- Combine with Graycode method to increase the resolution

>
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B Coding the stripes over color
® RGB-Image = Hue, Saturation, Intensity — HSI-Colorspace
® - Use the Hue value

® Hue value indexed in lookup table on stripe number

@ Requirement:
® Maximum of many color values, however, in the picture can be clearly
distinguished = no rainbow pattern

® Projection via flash light source
—> High contrast, influences of the
object texture

® Example: Minolta 3D 1500
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B Advantages
® Asingle image is taken
® Therefore suitable for dynamic scenes
W Fast

B Disadvantage
® Prefers homogeneous surface
® White or color calibration with respect to known material
B Resolution limited by virtually distinguishable colors
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M-

Works in real-time and on dynamic scenes

B Need only a few pictures (1 oder 2)
@ But requires a more complex correspondence algorithm
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Several beams

Multiple frames | ]
318
A it
Single beam Single frame
Slow, robust Fast, fragile
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