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Pinhole I 

The simplest model: Pinhole camera model 

Internal parameters: focal length f ( "focal distance") 
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Pinhole II 

Projection of a scene point P =(X,Y,Z) on to a pixel p =(u,v,w): 

 

Perspective projection 

Projecting back Pp
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Pinhole III 

Often used version: 
Pinhole camera model in Positive Location : 

Projection center C is located behind the image plane 

This means: no mirroring (minus signs are omitted) 

c 
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c 

Extended Camera Model I 

Pinhole camera model simplifies the real conditions strongly. Therefore, 
this model needs to be extended to be used also in practice. 

 

First, some definitions: 

Optical axis: 
Straight through the projection center, perpendicular to the image plane 

Principal point C(cx, cy): 
Intersection of the optical axis with the image plane 
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Extended Camera Model II 

Coordinate Systems: 

Image coordinate system: 
2D coordinate system 

Unit [pixels] 

Agreement for the Lecture (applies to most camera drivers): origin in the upper left 
corner of the image, u axis points to the right, v  Axis points downwards 

Camera coordinate system: 
3D coordinate system 

Unit [mm] 

Origin is in the Projection center, axes parallel to the axes of the Image coordinate 
system, i.e. x axis to the right, y axis downwards, and the z axis in accordance with 
the three-finger rule for a Right-handed coordinate system to the front 

World coordinate system: 
3D coordinate system 

Unit [mm] 

Basic coordinate system that can be anywhere in the room 



Chapter 7 | 8 

Extended Camera Model III 
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Extended Camera Model IV 

Terms: 

Intrinsic camera parameters:  

Focal length, image point  

Parameters for the description radial / tangential Lens distortion 

Define the non (unambiguous) reversible illustration from camera coordinate 
system into the Image coordinate system 

Extrinsic camera parameters: 

Define the relationship between the camera and the World Coordinate System 

Generally described by a rotation R and a Translation t 
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Extended Camera Model V 

Simplifications of the Pinhole camera model: 

Principle point is in the center of the image plane 

Pixels are assumed to be square 

No modeling of lens distortion 

There is no world coordinate system or it is identical with the camera 
coordinate system, i.e., no extrinsic camera parameters 
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Extended Camera Model VI 

Focal length: 

Focal length is the  distance between projection center  and image plane  

Since pixels are not like square but rather like rectangular, there is one parameter 
for each direction, i.e.: fx, fy 

 

The parameters  fx, fy  are the products  from the actual  Focal length with unit 
[mm] and the respective conversion factor with unit [Pixel / mm] 

The unit for the parameter  fx, fy is thus [Pixel]  
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Extended Camera Model VII 

The imaging of the camera coordinate system in the Image coordinate 
system, exclusively with the Intrinsic parameters is then defined by:  

 

 

 

 

 

Or, as a matrix multiplication by calibration matrix K in Homogeneous 
coordinates: 
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Extended Camera Model VIII 

Extrinsic camera calibration 

Is defined by a coordinate transformation from rotation R and translation t 

Coordinate transformation from the world coordinate system to the 
Camera coordinate system: 

 

 

 

 

The final output is a 34 projection matrix P (involving both intrinsic and 
extrinsic parameters) in homogeneous coordinates: 
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Lens Distortions I 

The imaging by real lenses is not perfectly linear 

In particular, lenses with a small focal length form the (Radial) distortion 

A sample distorted camera image! 
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Lens Distortions II 

Models are generally used 

Radial lens distortions 

Tangential lens distortions 

 

The output is the projection of the undistorted Coordinates on the 
plane z = 1: 

 

 

For the distorted image coordinates: 
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Lens Distortions III 

From the coordinates xn, yn, the distorted coordinates are computed 
according to the distortion model 

 

Radial lens distortion 

 

 

 

 

 

Tangential lens distortion 
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Lens Distortions IV 

Example of an undistorted image 

For each pixel in the rectified image, the intensity or color value is 

determined by "lookup" in the distorted original image and 

interpolation (e.g., bilinear) 
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Lens Distortions V 
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Camera Calibration I 

The calibration of a camera means the determination of the parameters with 
respect to a selected one camera model 

 

The determination of the intrinsic parameters is independent of the 
structure; As long as the zoom and focus of the camera remain the same, 
these parameters do not change 

 

The determination of the extrinsic parameters depends on the selection of 
the world coordinate system and changes depending on the structure 
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Camera Calibration II 

If the camera is calibrated, then the imaging function f maps a point 
from the world coordinate system unambiguously into the image 
coordinate system:  

 f : R3  R2 

 

f  is defined by the projection matrix P and subsequent transformation 
of the homogeneous coordinates by division of w 

  

The inverse image maps a point in the image coordinate system to a 
straight line in the world coordinate system that passes through the 
projection center 
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Stereo Reconstruction I 

Given:  

Two cameras with projection matrices C and C´ 

Two images x und x´ of the point X 

Then X can be reconstructed  
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Epipolar Geometry I 

Connection between two cameras is given by the epipolar geometry 

 

The intersections e and e´of the straight line through the projection centers 
with the image planes are called Epipole 

C 

C' 
e 

e' 
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Epipolar Geometry II 

Epipolar plane (X): 
A plane passes by C, C' and scene point X 
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Epipolar Geometry III 

Epipolar line l'(x): Line of intersection of (X) with image plane 

 

All points X, which are imaged 

      on x in camera image 1, are  

      mapped to a Point of the  

      line l'(x) in camera image 2. 
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Epipolar Geometry IV 

All epipolar lines of a camera system intersect in the epipoles e and e´ 
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Epipolar Geometry V 

Use 

Restriction of the correspondence problem from two dimensions to one 
dimension since, according to corresponding features, only the epipolar 
line has to be searched, therefore: 

Higher robustness (less false correspondences) 

Higher efficiency 
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Fundamental Matrix I 

Mathematical description of epipolar geometry is performed by the 
fundamental matrix 

Properties of the fundamental matrix  F: 

Is a 33-Matrix 

Has Rank 2 

For all correspondences x, x´: 
x´T F x = 0 
(x and x´ are pixels in homogenous coordinates with w = 1) 
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Fundamental Matrix II 

The epipolar lines can be calculated with the fundamental matrix 

Epipolar lines: 

l = FTx´ 

l´ = Fx 

The following applies to the epipoles: 

Fe = 0 

FTe´= 0 

Note: l (or l´) defines a 2D straight line as follows: 
l·x = 0 for all pixels x (in homogenous coordinates with w = 1), which lies on 
this straight line 
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Fundamental Matrix III 

The fundamental matrix can be calculated in several ways: 

About image point correspondences in the left and right camera 

For known intrinsic and extrinsic calibration of the cameras directly via the 
calibration matrices K, K´ and the essential matrix E, which is defined by the 
extrinsic parameters  
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Fundamental Matrix IV 

Calculation of the fundamental matrix via Essential matrix is possible  

 

Essential matrix can be calculated by the extrinsic parameters: 

Given: 

Camera 1 with (I | 0) as Transformation (Identical) 

Camera 2 with (R | t) as Transformations 

Essential matrix E can be calculated as: 

The following applies to the 

epipoles: 

e = -KRTt 

e´ = K´t 
  R
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Fundamental Matrix V 

Having computed the essential matrix (e.g., calculated via the extrinsic 
parameters) and the intrinsic parameters, i.e. the calibration matrices K, K´, 
the fundamental matrix can be calculated as:  
 

F = K´-TEK-1 
 

Conversely, if the fundamental matrix has been determined (e.g., via pixel 
correspondences) and the intrinsic parameters, i.e. the calibration matrices 
K, K´, the essential matrix can be calculated as: 
 

E = K´TFK 
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Stereoscopy: Depth Maps I  
Benefits of the Fundamental Matrix: 

By using the fundamental matrix, the input images can be rectified 

After rectification, all epipolar lines run horizontally with the same v-coordinate as 
the image point in the other camera image 

After correspondences only horizontal (in one direction) has to be searched 

 

 

 

 

 

 

 

 



Chapter 7 | 33 

Stereoscopy: Depth Maps II  

Rectified images have the advantage that optimized correlation algorithms 
can be used for solving the correspondence problem  
 30 Hz (and higher) for calculating the disparity card at 640 × 480 8-bit 
gray scale 

 

Disadvantage: 

Interpolation necessary for the calculation of the rectified images  Quality loss 

Images strongly distorted depending on the structure 
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Stereoscopy: Depth Maps III 

Example of rectification with a standard stereo setup  relatively low 
distortion 

Original Images 

Left  / Right 

Rectified Images 

Left / Rigth 
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Stereoscopy: Depth Maps IV 

After solving the correspondence problem: 

Point clouds can be calculated by triangulation, as explained before 

Depth images are generated by recording the disparities (Difference of u- 
coordinates for correspondence found in the rectified images) into a gray scale 
image:   The higher the gray value, the closer the corresponding 3D point to 
the camera is 
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Stereoscopy: Depth Maps V 

Example of standard benchmark image pair “Tsukuba” 

Left 

Image 

Right 

Image 

Depth Image 



Chapter 7 | 37 

Passive Pattern Projection 

A pattern is projected to make homogeneous surfaces structured  

Knowledge of the pattern is not necessary 

Projector does not need to be calibrated 

Correspondence problem for stereo camera systems can be solved more 
effectively 
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Active Pattern Projection 

Idea: 
Geometrical structure coded in projected light can be read back from the 
image  

Principle: Triangulation 

Projection of a light pattern 
on object 

Observation of the 
projected pattern by camera 

Calculation of the selected 
3D point 
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Structured light: Faster recording 

Projection of two dimensional patterns 

Problem: Correspondence problem 

 

 

 

 

 

 

 

 

 

 

Which point in the camera image corresponds to which ray of the projector? 
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Solution 

Types of patterns for solving correspondence problems 

 

Time coded methods 

 

Phase shift method 

 

Frequency encoding 

 

Locally coding methods 

Color coding 

Binary coded black and white pattern 
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Binary Coding / Time Coded Process 

Pattern 1 

Pattern 2 

Pattern 3 

Projected 

over time 

Example:  

3 binary-encoded patterns 

which allows the measuring 

surface to be divided in 8 sub-

regions 
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Temporal Coding I 

Projecting many strips one after the other  

Binary coding of stripe pattern  smaller number of projections 

When n projections with different patterns n  2n strips 

In the event of a faulty evaluation of a pixel code value, max.   Error: 2n-1 

Using the GrayCode  max. Error: 1 
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Temporal Coding II 

Each strip is made by projecting several patterns each of which has a unique 
code [Posdamer 82] 

Space 

Time 
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Temporal Coding III 

Pattern 1 

Pattern 2 

Pattern 3 

Projection 

over time 

Example:  

7 Binary pattern 

… 

Codeword: 101....  identifies the strip 
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Temporal Coding IV 

Top: Binary code, Bottom: Gray code 
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Temporal Coding V 

For multiple projection of binary patterns (or Gray Code), the achievable 
resolution is limited by the resolution of the projector 

 

 

Therefore: Combination with phase shifting 

Phase only uniquely in the interval [-/2, +/2] 

Combination solves ambiguity 

Sub pixel resolution (regarding projector) is achieved 
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Temporal Coding VI 

Four different phases in the phase shifting process 
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Phase Coded Methods I 

Sinusoidal gray scale is projected onto the scene 

Intensity value Ii(x,y) in the i-th phase pattern 
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I0:  Intensity offset 

A(x,y):  Amplitude 

φ(x,y):  Searched phase value  

Δφ:  Phase shift per stage 
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Phase Coded Methods II 

Ex. One case with 4 measurements and Δφ = π/2 

 

 

 

 

 

Uniqueness of the phase value only within one period guaranteed 

  Combine with Graycode method to increase the resolution 
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Frequency Coding I 

Coding the stripes over color 

RGB-Image  Hue, Saturation, Intensity – HSI-Colorspace 

 Use the Hue value 

 

Hue value indexed in lookup table on stripe number 

 

Requirement:  

Maximum of many color values, however, in the picture can be clearly 
distinguished  no rainbow pattern  

Projection via flash light source  
 High contrast, influences of the 
object texture  

Example: Minolta 3D 1500 
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Frequency Coding II 
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Frequency Coding III 

Advantages 

A single image is taken 

Therefore suitable for dynamic scenes 

Fast 

 

Disadvantage 

Prefers homogeneous surface 

White or color calibration with respect to known material 

Resolution limited by virtually distinguishable colors 
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More Complex Procedures 

Works despite complex appearances 

Works in real-time and on dynamic scenes 

Need only a few pictures (1 oder 2) 

But requires a more complex correspondence algorithm 
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Summary: Active Pattern Projection 

Slow, robust Fast, fragile 

Several beams 

Multiple frames 

Single frame Single beam 
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